Metamath Proof Explorer


Theorem ralbida

Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003) (Proof shortened by Wolf Lammen, 31-Oct-2024)

Ref Expression
Hypotheses ralbida.1 𝑥 𝜑
ralbida.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion ralbida ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralbida.1 𝑥 𝜑
2 ralbida.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
3 2 biimpd ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
4 1 3 ralimdaa ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 → ∀ 𝑥𝐴 𝜒 ) )
5 2 biimprd ( ( 𝜑𝑥𝐴 ) → ( 𝜒𝜓 ) )
6 1 5 ralimdaa ( 𝜑 → ( ∀ 𝑥𝐴 𝜒 → ∀ 𝑥𝐴 𝜓 ) )
7 4 6 impbid ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐴 𝜒 ) )