Metamath Proof Explorer


Theorem ralbidaOLD

Description: Obsolete version of ralbida as of 31-Oct-2024. (Contributed by NM, 6-Oct-2003) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ralbida.1 𝑥 𝜑
ralbida.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion ralbidaOLD ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralbida.1 𝑥 𝜑
2 ralbida.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
3 2 pm5.74da ( 𝜑 → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐴𝜒 ) ) )
4 1 3 albid ( 𝜑 → ( ∀ 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∀ 𝑥 ( 𝑥𝐴𝜒 ) ) )
5 df-ral ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥 ( 𝑥𝐴𝜓 ) )
6 df-ral ( ∀ 𝑥𝐴 𝜒 ↔ ∀ 𝑥 ( 𝑥𝐴𝜒 ) )
7 4 5 6 3bitr4g ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐴 𝜒 ) )