Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralbidv2.1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 → 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 → 𝜒 ) ) ) | |
Assertion | ralbidv2 | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbidv2.1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 → 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 → 𝜒 ) ) ) | |
2 | 1 | albidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜒 ) ) ) |
3 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ) | |
4 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝜒 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜒 ) ) | |
5 | 2 3 4 | 3bitr4g | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜒 ) ) |