Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralbidv2.1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 → 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 → 𝜒 ) ) ) | |
| Assertion | ralbidv2 | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbidv2.1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 → 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 → 𝜒 ) ) ) | |
| 2 | 1 | albidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜒 ) ) ) |
| 3 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ) | |
| 4 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝜒 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜒 ) ) | |
| 5 | 2 3 4 | 3bitr4g | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜒 ) ) |