Metamath Proof Explorer


Theorem ralbii2

Description: Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005)

Ref Expression
Hypothesis ralbii2.1 ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐵𝜓 ) )
Assertion ralbii2 ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 ralbii2.1 ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐵𝜓 ) )
2 1 albii ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑥 ( 𝑥𝐵𝜓 ) )
3 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
4 df-ral ( ∀ 𝑥𝐵 𝜓 ↔ ∀ 𝑥 ( 𝑥𝐵𝜓 ) )
5 2 3 4 3bitr4i ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐵 𝜓 )