Description: Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralbii2.1 | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 → 𝜓 ) ) | |
Assertion | ralbii2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐵 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbii2.1 | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 → 𝜓 ) ) | |
2 | 1 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜓 ) ) |
3 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
4 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜓 ) ) | |
5 | 2 3 4 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐵 𝜓 ) |