Metamath Proof Explorer


Theorem ralbiim

Description: Split a biconditional and distribute quantifier. Restricted quantifier version of albiim . (Contributed by NM, 3-Jun-2012)

Ref Expression
Assertion ralbiim ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ∧ ∀ 𝑥𝐴 ( 𝜓𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 dfbi2 ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜓𝜑 ) ) )
2 1 ralbii ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ∀ 𝑥𝐴 ( ( 𝜑𝜓 ) ∧ ( 𝜓𝜑 ) ) )
3 r19.26 ( ∀ 𝑥𝐴 ( ( 𝜑𝜓 ) ∧ ( 𝜓𝜑 ) ) ↔ ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ∧ ∀ 𝑥𝐴 ( 𝜓𝜑 ) ) )
4 2 3 bitri ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ∧ ∀ 𝑥𝐴 ( 𝜓𝜑 ) ) )