Description: Split a biconditional and distribute quantifier. Restricted quantifier version of albiim . (Contributed by NM, 3-Jun-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | ralbiim | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ) | |
2 | 1 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ) |
3 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) ) | |
4 | 2 3 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) ) |