Description: Swap first and third restricted universal quantifiers. (Contributed by AV, 3-Dec-2021) (Proof shortened by Wolf Lammen, 2-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ralcom13 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ↔ ∀ 𝑧 ∈ 𝐶 ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝜑 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralrot3 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ↔ ∀ 𝑧 ∈ 𝐶 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ) | |
| 2 | ralcom | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝜑 ) | |
| 3 | 2 | ralbii | ⊢ ( ∀ 𝑧 ∈ 𝐶 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑧 ∈ 𝐶 ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝜑 ) | 
| 4 | 1 3 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ↔ ∀ 𝑧 ∈ 𝐶 ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝜑 ) |