Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
2 |
1
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
3 |
2
|
imbi1d |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 → 𝜑 ) ) ) |
4 |
3
|
dral1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜑 ) ) ) |
5 |
4
|
bicomd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
6 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜑 ) ) |
7 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
8 |
5 6 7
|
3bitr4g |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
9 |
2 8
|
imbi12d |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
10 |
9
|
dral1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
11 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 𝜑 ) ) |
12 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
13 |
10 11 12
|
3bitr4g |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
14 |
13
|
biimpd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 → ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
15 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 |
16 |
|
nfra2 |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 |
17 |
15 16
|
nfan |
⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) |
18 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 |
19 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 |
20 |
18 19
|
nfan |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) |
21 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ) |
22 |
21
|
adantr |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) → Ⅎ 𝑥 𝑦 ) |
23 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) → Ⅎ 𝑥 𝐴 ) |
24 |
22 23
|
nfeld |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) → Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
25 |
20 24
|
nfan1 |
⊢ Ⅎ 𝑥 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) ∧ 𝑦 ∈ 𝐴 ) |
26 |
|
rsp2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝜑 ) ) |
27 |
26
|
ancomsd |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 → ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ) |
28 |
27
|
expdimp |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
29 |
28
|
adantll |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
30 |
25 29
|
ralrimi |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) ∧ 𝑦 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 𝜑 ) |
31 |
30
|
ex |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) → ( 𝑦 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
32 |
17 31
|
ralrimi |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) → ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ) |
33 |
32
|
ex |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 → ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
34 |
14 33
|
pm2.61i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 → ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ) |