Metamath Proof Explorer


Theorem ralcom3OLD

Description: Obsolete version of ralcom3 as of 22-Dec-2024. (Contributed by NM, 22-Feb-2004) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ralcom3OLD ( ∀ 𝑥𝐴 ( 𝑥𝐵𝜑 ) ↔ ∀ 𝑥𝐵 ( 𝑥𝐴𝜑 ) )

Proof

Step Hyp Ref Expression
1 pm2.04 ( ( 𝑥𝐴 → ( 𝑥𝐵𝜑 ) ) → ( 𝑥𝐵 → ( 𝑥𝐴𝜑 ) ) )
2 1 ralimi2 ( ∀ 𝑥𝐴 ( 𝑥𝐵𝜑 ) → ∀ 𝑥𝐵 ( 𝑥𝐴𝜑 ) )
3 pm2.04 ( ( 𝑥𝐵 → ( 𝑥𝐴𝜑 ) ) → ( 𝑥𝐴 → ( 𝑥𝐵𝜑 ) ) )
4 3 ralimi2 ( ∀ 𝑥𝐵 ( 𝑥𝐴𝜑 ) → ∀ 𝑥𝐴 ( 𝑥𝐵𝜑 ) )
5 2 4 impbii ( ∀ 𝑥𝐴 ( 𝑥𝐵𝜑 ) ↔ ∀ 𝑥𝐵 ( 𝑥𝐴𝜑 ) )