Metamath Proof Explorer


Theorem ralcom4

Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019) (Proof shortened by Wolf Lammen, 31-Oct-2024)

Ref Expression
Assertion ralcom4 ( ∀ 𝑥𝐴𝑦 𝜑 ↔ ∀ 𝑦𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 19.21v ( ∀ 𝑦 ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐴 → ∀ 𝑦 𝜑 ) )
2 1 albii ( ∀ 𝑥𝑦 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑦 𝜑 ) )
3 alcom ( ∀ 𝑦𝑥 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑥𝑦 ( 𝑥𝐴𝜑 ) )
4 df-ral ( ∀ 𝑥𝐴𝑦 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑦 𝜑 ) )
5 2 3 4 3bitr4ri ( ∀ 𝑥𝐴𝑦 𝜑 ↔ ∀ 𝑦𝑥 ( 𝑥𝐴𝜑 ) )
6 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
7 6 albii ( ∀ 𝑦𝑥𝐴 𝜑 ↔ ∀ 𝑦𝑥 ( 𝑥𝐴𝜑 ) )
8 5 7 bitr4i ( ∀ 𝑥𝐴𝑦 𝜑 ↔ ∀ 𝑦𝑥𝐴 𝜑 )