Metamath Proof Explorer


Theorem ralcom4OLD

Description: Obsolete version of ralcom4 as of 31-Oct-2024. (Contributed by NM, 26-Mar-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion ralcom4OLD ( ∀ 𝑥𝐴𝑦 𝜑 ↔ ∀ 𝑦𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 19.21v ( ∀ 𝑦 ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐴 → ∀ 𝑦 𝜑 ) )
2 1 bicomi ( ( 𝑥𝐴 → ∀ 𝑦 𝜑 ) ↔ ∀ 𝑦 ( 𝑥𝐴𝜑 ) )
3 2 albii ( ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑦 𝜑 ) ↔ ∀ 𝑥𝑦 ( 𝑥𝐴𝜑 ) )
4 alcom ( ∀ 𝑥𝑦 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑦𝑥 ( 𝑥𝐴𝜑 ) )
5 3 4 bitri ( ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑦 𝜑 ) ↔ ∀ 𝑦𝑥 ( 𝑥𝐴𝜑 ) )
6 df-ral ( ∀ 𝑥𝐴𝑦 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑦 𝜑 ) )
7 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
8 7 albii ( ∀ 𝑦𝑥𝐴 𝜑 ↔ ∀ 𝑦𝑥 ( 𝑥𝐴𝜑 ) )
9 5 6 8 3bitr4i ( ∀ 𝑥𝐴𝑦 𝜑 ↔ ∀ 𝑦𝑥𝐴 𝜑 )