Step |
Hyp |
Ref |
Expression |
1 |
|
19.21v |
⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 𝜑 ) ) |
2 |
1
|
bicomi |
⊢ ( ( 𝑥 ∈ 𝐴 → ∀ 𝑦 𝜑 ) ↔ ∀ 𝑦 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
3 |
2
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
4 |
|
alcom |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
5 |
3 4
|
bitri |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
6 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 𝜑 ) ) |
7 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
8 |
7
|
albii |
⊢ ( ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
9 |
5 6 8
|
3bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 𝜑 ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 𝜑 ) |