Step |
Hyp |
Ref |
Expression |
1 |
|
ralcomf.1 |
⊢ Ⅎ 𝑦 𝐴 |
2 |
|
ralcomf.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
ancomst |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ) |
4 |
3
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ) |
5 |
|
alcom |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ) |
6 |
4 5
|
bitri |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ) |
7 |
1
|
r2alf |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ) |
8 |
2
|
r2alf |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ) |
9 |
6 7 8
|
3bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝜑 ) |