Description: Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | raldifb | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∉ 𝐵 → 𝜑 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵 ) → 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∉ 𝐵 → 𝜑 ) ) ) | |
2 | df-nel | ⊢ ( 𝑥 ∉ 𝐵 ↔ ¬ 𝑥 ∈ 𝐵 ) | |
3 | 2 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
4 | eldif | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
5 | 3 4 | bitr4i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵 ) ↔ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) |
6 | 5 | imbi1i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵 ) → 𝜑 ) ↔ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → 𝜑 ) ) |
7 | 1 6 | bitr3i | ⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝑥 ∉ 𝐵 → 𝜑 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → 𝜑 ) ) |
8 | 7 | ralbii2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∉ 𝐵 → 𝜑 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝜑 ) |