Metamath Proof Explorer


Theorem raldifb

Description: Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018)

Ref Expression
Assertion raldifb ( ∀ 𝑥𝐴 ( 𝑥𝐵𝜑 ) ↔ ∀ 𝑥 ∈ ( 𝐴𝐵 ) 𝜑 )

Proof

Step Hyp Ref Expression
1 impexp ( ( ( 𝑥𝐴𝑥𝐵 ) → 𝜑 ) ↔ ( 𝑥𝐴 → ( 𝑥𝐵𝜑 ) ) )
2 df-nel ( 𝑥𝐵 ↔ ¬ 𝑥𝐵 )
3 2 anbi2i ( ( 𝑥𝐴𝑥𝐵 ) ↔ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )
4 eldif ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )
5 3 4 bitr4i ( ( 𝑥𝐴𝑥𝐵 ) ↔ 𝑥 ∈ ( 𝐴𝐵 ) )
6 5 imbi1i ( ( ( 𝑥𝐴𝑥𝐵 ) → 𝜑 ) ↔ ( 𝑥 ∈ ( 𝐴𝐵 ) → 𝜑 ) )
7 1 6 bitr3i ( ( 𝑥𝐴 → ( 𝑥𝐵𝜑 ) ) ↔ ( 𝑥 ∈ ( 𝐴𝐵 ) → 𝜑 ) )
8 7 ralbii2 ( ∀ 𝑥𝐴 ( 𝑥𝐵𝜑 ) ↔ ∀ 𝑥 ∈ ( 𝐴𝐵 ) 𝜑 )