Metamath Proof Explorer


Theorem raldifeq

Description: Equality theorem for restricted universal quantifier. (Contributed by Thierry Arnoux, 6-Jul-2019)

Ref Expression
Hypotheses raldifeq.1 ( 𝜑𝐴𝐵 )
raldifeq.2 ( 𝜑 → ∀ 𝑥 ∈ ( 𝐵𝐴 ) 𝜓 )
Assertion raldifeq ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐵 𝜓 ) )

Proof

Step Hyp Ref Expression
1 raldifeq.1 ( 𝜑𝐴𝐵 )
2 raldifeq.2 ( 𝜑 → ∀ 𝑥 ∈ ( 𝐵𝐴 ) 𝜓 )
3 2 biantrud ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ( ∀ 𝑥𝐴 𝜓 ∧ ∀ 𝑥 ∈ ( 𝐵𝐴 ) 𝜓 ) ) )
4 ralunb ( ∀ 𝑥 ∈ ( 𝐴 ∪ ( 𝐵𝐴 ) ) 𝜓 ↔ ( ∀ 𝑥𝐴 𝜓 ∧ ∀ 𝑥 ∈ ( 𝐵𝐴 ) 𝜓 ) )
5 3 4 bitr4di ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥 ∈ ( 𝐴 ∪ ( 𝐵𝐴 ) ) 𝜓 ) )
6 undif ( 𝐴𝐵 ↔ ( 𝐴 ∪ ( 𝐵𝐴 ) ) = 𝐵 )
7 1 6 sylib ( 𝜑 → ( 𝐴 ∪ ( 𝐵𝐴 ) ) = 𝐵 )
8 7 raleqdv ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ ( 𝐵𝐴 ) ) 𝜓 ↔ ∀ 𝑥𝐵 𝜓 ) )
9 5 8 bitrd ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐵 𝜓 ) )