| Step |
Hyp |
Ref |
Expression |
| 1 |
|
raldifeq.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| 2 |
|
raldifeq.2 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝜓 ) |
| 3 |
2
|
biantrud |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ( ∀ 𝑥 ∈ 𝐴 𝜓 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝜓 ) ) ) |
| 4 |
|
ralunb |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) 𝜓 ↔ ( ∀ 𝑥 ∈ 𝐴 𝜓 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝜓 ) ) |
| 5 |
3 4
|
bitr4di |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) 𝜓 ) ) |
| 6 |
|
undif |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
| 7 |
1 6
|
sylib |
⊢ ( 𝜑 → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
| 8 |
7
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜓 ) ) |
| 9 |
5 8
|
bitrd |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜓 ) ) |