Metamath Proof Explorer


Theorem raldifsnb

Description: Restricted universal quantification on a class difference with a singleton in terms of an implication. (Contributed by Alexander van der Vekens, 26-Jan-2018)

Ref Expression
Assertion raldifsnb ( ∀ 𝑥𝐴 ( 𝑥𝑌𝜑 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 𝑌 } ) 𝜑 )

Proof

Step Hyp Ref Expression
1 velsn ( 𝑥 ∈ { 𝑌 } ↔ 𝑥 = 𝑌 )
2 nnel ( ¬ 𝑥 ∉ { 𝑌 } ↔ 𝑥 ∈ { 𝑌 } )
3 nne ( ¬ 𝑥𝑌𝑥 = 𝑌 )
4 1 2 3 3bitr4ri ( ¬ 𝑥𝑌 ↔ ¬ 𝑥 ∉ { 𝑌 } )
5 4 con4bii ( 𝑥𝑌𝑥 ∉ { 𝑌 } )
6 5 imbi1i ( ( 𝑥𝑌𝜑 ) ↔ ( 𝑥 ∉ { 𝑌 } → 𝜑 ) )
7 6 ralbii ( ∀ 𝑥𝐴 ( 𝑥𝑌𝜑 ) ↔ ∀ 𝑥𝐴 ( 𝑥 ∉ { 𝑌 } → 𝜑 ) )
8 raldifb ( ∀ 𝑥𝐴 ( 𝑥 ∉ { 𝑌 } → 𝜑 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 𝑌 } ) 𝜑 )
9 7 8 bitri ( ∀ 𝑥𝐴 ( 𝑥𝑌𝜑 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 𝑌 } ) 𝜑 )