Description: Restricted universal quantification on a class difference with a singleton in terms of an implication. (Contributed by Alexander van der Vekens, 26-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | raldifsnb | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ 𝑌 → 𝜑 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 𝑌 } ) 𝜑 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | velsn | ⊢ ( 𝑥 ∈ { 𝑌 } ↔ 𝑥 = 𝑌 ) | |
| 2 | nnel | ⊢ ( ¬ 𝑥 ∉ { 𝑌 } ↔ 𝑥 ∈ { 𝑌 } ) | |
| 3 | nne | ⊢ ( ¬ 𝑥 ≠ 𝑌 ↔ 𝑥 = 𝑌 ) | |
| 4 | 1 2 3 | 3bitr4ri | ⊢ ( ¬ 𝑥 ≠ 𝑌 ↔ ¬ 𝑥 ∉ { 𝑌 } ) | 
| 5 | 4 | con4bii | ⊢ ( 𝑥 ≠ 𝑌 ↔ 𝑥 ∉ { 𝑌 } ) | 
| 6 | 5 | imbi1i | ⊢ ( ( 𝑥 ≠ 𝑌 → 𝜑 ) ↔ ( 𝑥 ∉ { 𝑌 } → 𝜑 ) ) | 
| 7 | 6 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ 𝑌 → 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∉ { 𝑌 } → 𝜑 ) ) | 
| 8 | raldifb | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∉ { 𝑌 } → 𝜑 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 𝑌 } ) 𝜑 ) | |
| 9 | 7 8 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ 𝑌 → 𝜑 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 𝑌 } ) 𝜑 ) |