Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ) ) |
2 |
1
|
imbi1i |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) → ¬ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ) → ¬ 𝜑 ) ) |
3 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵 ) → ¬ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ≠ 𝐵 → ¬ 𝜑 ) ) ) |
4 |
|
df-ne |
⊢ ( 𝑥 ≠ 𝐵 ↔ ¬ 𝑥 = 𝐵 ) |
5 |
4
|
imbi1i |
⊢ ( ( 𝑥 ≠ 𝐵 → ¬ 𝜑 ) ↔ ( ¬ 𝑥 = 𝐵 → ¬ 𝜑 ) ) |
6 |
|
con34b |
⊢ ( ( 𝜑 → 𝑥 = 𝐵 ) ↔ ( ¬ 𝑥 = 𝐵 → ¬ 𝜑 ) ) |
7 |
5 6
|
bitr4i |
⊢ ( ( 𝑥 ≠ 𝐵 → ¬ 𝜑 ) ↔ ( 𝜑 → 𝑥 = 𝐵 ) ) |
8 |
7
|
imbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝑥 ≠ 𝐵 → ¬ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 = 𝐵 ) ) ) |
9 |
2 3 8
|
3bitri |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) → ¬ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 = 𝐵 ) ) ) |
10 |
9
|
ralbii2 |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∖ { 𝐵 } ) ¬ 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝐵 ) ) |