Metamath Proof Explorer


Theorem raleleq

Description: All elements of a class are elements of a class equal to this class. (Contributed by AV, 30-Oct-2020) Avoid ax-8 . (Revised by Wolf Lammen, 9-Mar-2025)

Ref Expression
Assertion raleleq ( 𝐴 = 𝐵 → ∀ 𝑥𝐴 𝑥𝐵 )

Proof

Step Hyp Ref Expression
1 dfcleq ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
2 biimp ( ( 𝑥𝐴𝑥𝐵 ) → ( 𝑥𝐴𝑥𝐵 ) )
3 2 alimi ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) → ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
4 1 3 sylbi ( 𝐴 = 𝐵 → ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
5 df-ral ( ∀ 𝑥𝐴 𝑥𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
6 4 5 sylibr ( 𝐴 = 𝐵 → ∀ 𝑥𝐴 𝑥𝐵 )