Metamath Proof Explorer
Description: All elements of a class are elements of a class equal to this class.
(Contributed by AV, 30-Oct-2020)
|
|
Ref |
Expression |
|
Assertion |
raleleq |
⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ralel |
⊢ ∀ 𝑥 ∈ 𝐵 𝑥 ∈ 𝐵 |
2 |
|
id |
⊢ ( 𝐴 = 𝐵 → 𝐴 = 𝐵 ) |
3 |
2
|
raleqdv |
⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝑥 ∈ 𝐵 ) ) |
4 |
1 3
|
mpbiri |
⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) |