Description: All elements of a class are elements of a class equal to this class. (Contributed by AV, 30-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | raleleq | ⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) | |
2 | 1 | biimpd | ⊢ ( 𝐴 = 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
3 | 2 | ralrimiv | ⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) |