Description: Equality deduction for restricted universal quantifier. (Contributed by Thierry Arnoux, 8-Mar-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | raleqbid.0 | ⊢ Ⅎ 𝑥 𝜑 | |
raleqbid.1 | ⊢ Ⅎ 𝑥 𝐴 | ||
raleqbid.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
raleqbid.3 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
raleqbid.4 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | raleqbid | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbid.0 | ⊢ Ⅎ 𝑥 𝜑 | |
2 | raleqbid.1 | ⊢ Ⅎ 𝑥 𝐴 | |
3 | raleqbid.2 | ⊢ Ⅎ 𝑥 𝐵 | |
4 | raleqbid.3 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
5 | raleqbid.4 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
6 | 2 3 | raleqf | ⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜓 ) ) |
7 | 4 6 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜓 ) ) |
8 | 1 5 | ralbid | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜒 ) ) |
9 | 7 8 | bitrd | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜒 ) ) |