Metamath Proof Explorer


Theorem raleqbid

Description: Equality deduction for restricted universal quantifier. (Contributed by Thierry Arnoux, 8-Mar-2017)

Ref Expression
Hypotheses raleqbid.0 𝑥 𝜑
raleqbid.1 𝑥 𝐴
raleqbid.2 𝑥 𝐵
raleqbid.3 ( 𝜑𝐴 = 𝐵 )
raleqbid.4 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion raleqbid ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 raleqbid.0 𝑥 𝜑
2 raleqbid.1 𝑥 𝐴
3 raleqbid.2 𝑥 𝐵
4 raleqbid.3 ( 𝜑𝐴 = 𝐵 )
5 raleqbid.4 ( 𝜑 → ( 𝜓𝜒 ) )
6 2 3 raleqf ( 𝐴 = 𝐵 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐵 𝜓 ) )
7 4 6 syl ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐵 𝜓 ) )
8 1 5 ralbid ( 𝜑 → ( ∀ 𝑥𝐵 𝜓 ↔ ∀ 𝑥𝐵 𝜒 ) )
9 7 8 bitrd ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐵 𝜒 ) )