Step |
Hyp |
Ref |
Expression |
1 |
|
raleqbidvv.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
|
raleqbidvv.2 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
3 |
2
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝜓 ↔ 𝜒 ) ) |
4 |
|
dfcleq |
⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
5 |
1 4
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
6 |
|
19.26 |
⊢ ( ∀ 𝑥 ( ( 𝜓 ↔ 𝜒 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ↔ ( ∀ 𝑥 ( 𝜓 ↔ 𝜒 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
7 |
3 5 6
|
sylanbrc |
⊢ ( 𝜑 → ∀ 𝑥 ( ( 𝜓 ↔ 𝜒 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
8 |
|
imbi12 |
⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ( ( 𝜓 ↔ 𝜒 ) → ( ( 𝑥 ∈ 𝐴 → 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 → 𝜒 ) ) ) ) |
9 |
8
|
impcom |
⊢ ( ( ( 𝜓 ↔ 𝜒 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐴 → 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 → 𝜒 ) ) ) |
10 |
7 9
|
sylg |
⊢ ( 𝜑 → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 → 𝜒 ) ) ) |
11 |
|
albi |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 → 𝜒 ) ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜒 ) ) ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜒 ) ) ) |
13 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ) |
14 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝜒 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜒 ) ) |
15 |
12 13 14
|
3bitr4g |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜒 ) ) |