Metamath Proof Explorer


Theorem raleqd

Description: Equality deduction for restricted universal quantifier. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses raleqd.a 𝑥 𝐴
raleqd.b 𝑥 𝐵
raleqd.e ( 𝜑𝐴 = 𝐵 )
Assertion raleqd ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐵 𝜓 ) )

Proof

Step Hyp Ref Expression
1 raleqd.a 𝑥 𝐴
2 raleqd.b 𝑥 𝐵
3 raleqd.e ( 𝜑𝐴 = 𝐵 )
4 1 2 raleqf ( 𝐴 = 𝐵 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐵 𝜓 ) )
5 3 4 syl ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐵 𝜓 ) )