Metamath Proof Explorer
Description: Equality deduction for restricted universal quantifier. (Contributed by Glauco Siliprandi, 23-Oct-2021)
|
|
Ref |
Expression |
|
Hypotheses |
raleqd.a |
⊢ Ⅎ 𝑥 𝐴 |
|
|
raleqd.b |
⊢ Ⅎ 𝑥 𝐵 |
|
|
raleqd.e |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
Assertion |
raleqd |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜓 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
raleqd.a |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
raleqd.b |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
raleqd.e |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
4 |
1 2
|
raleqf |
⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜓 ) ) |
5 |
3 4
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜓 ) ) |