Description: Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | raleq1i.1 | ⊢ 𝐴 = 𝐵 | |
Assertion | raleqi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐵 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1i.1 | ⊢ 𝐴 = 𝐵 | |
2 | raleq | ⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐵 𝜑 ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐵 𝜑 ) |