Metamath Proof Explorer


Theorem raleqi

Description: Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypothesis raleq1i.1 𝐴 = 𝐵
Assertion raleqi ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐵 𝜑 )

Proof

Step Hyp Ref Expression
1 raleq1i.1 𝐴 = 𝐵
2 raleq ( 𝐴 = 𝐵 → ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐵 𝜑 ) )
3 1 2 ax-mp ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐵 𝜑 )