Metamath Proof Explorer


Theorem raleqtrrdv

Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025)

Ref Expression
Hypotheses raleqtrrdv.1 ( 𝜑 → ∀ 𝑥𝐴 𝜓 )
raleqtrrdv.2 ( 𝜑𝐵 = 𝐴 )
Assertion raleqtrrdv ( 𝜑 → ∀ 𝑥𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 raleqtrrdv.1 ( 𝜑 → ∀ 𝑥𝐴 𝜓 )
2 raleqtrrdv.2 ( 𝜑𝐵 = 𝐴 )
3 2 raleqdv ( 𝜑 → ( ∀ 𝑥𝐵 𝜓 ↔ ∀ 𝑥𝐴 𝜓 ) )
4 1 3 mpbird ( 𝜑 → ∀ 𝑥𝐵 𝜓 )