Metamath Proof Explorer
Description: Substitution of equal classes into a restricted universal quantifier.
(Contributed by Matthew House, 21-Jul-2025)
|
|
Ref |
Expression |
|
Hypotheses |
raleqtrrdv.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) |
|
|
raleqtrrdv.2 |
⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
|
Assertion |
raleqtrrdv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
raleqtrrdv.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) |
2 |
|
raleqtrrdv.2 |
⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
3 |
2
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
4 |
1 3
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 𝜓 ) |