Metamath Proof Explorer


Theorem ralf0

Description: The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005) (Proof shortened by JJ, 14-Jul-2021) Avoid df-clel , ax-8 . (Revised by Gino Giotto, 2-Sep-2024)

Ref Expression
Hypothesis ralf0.1 ¬ 𝜑
Assertion ralf0 ( ∀ 𝑥𝐴 𝜑𝐴 = ∅ )

Proof

Step Hyp Ref Expression
1 ralf0.1 ¬ 𝜑
2 r19.26 ( ∀ 𝑥𝐴 ( ¬ 𝜑𝜑 ) ↔ ( ∀ 𝑥𝐴 ¬ 𝜑 ∧ ∀ 𝑥𝐴 𝜑 ) )
3 pm2.24 ( 𝜑 → ( ¬ 𝜑 → ⊥ ) )
4 3 impcom ( ( ¬ 𝜑𝜑 ) → ⊥ )
5 4 ralimi ( ∀ 𝑥𝐴 ( ¬ 𝜑𝜑 ) → ∀ 𝑥𝐴 ⊥ )
6 df-ral ( ∀ 𝑥𝐴 ⊥ ↔ ∀ 𝑥 ( 𝑥𝐴 → ⊥ ) )
7 dfnot ( ¬ 𝑥𝐴 ↔ ( 𝑥𝐴 → ⊥ ) )
8 7 bicomi ( ( 𝑥𝐴 → ⊥ ) ↔ ¬ 𝑥𝐴 )
9 8 albii ( ∀ 𝑥 ( 𝑥𝐴 → ⊥ ) ↔ ∀ 𝑥 ¬ 𝑥𝐴 )
10 6 9 sylbb ( ∀ 𝑥𝐴 ⊥ → ∀ 𝑥 ¬ 𝑥𝐴 )
11 id ( 𝑥𝐴𝑥𝐴 )
12 falim ( ⊥ → 𝑥𝐴 )
13 11 12 pm5.21ni ( ¬ 𝑥𝐴 → ( 𝑥𝐴 ↔ ⊥ ) )
14 df-clab ( 𝑥 ∈ { 𝑦 ∣ ⊥ } ↔ [ 𝑥 / 𝑦 ] ⊥ )
15 sbv ( [ 𝑥 / 𝑦 ] ⊥ ↔ ⊥ )
16 14 15 bitri ( 𝑥 ∈ { 𝑦 ∣ ⊥ } ↔ ⊥ )
17 13 16 bitr4di ( ¬ 𝑥𝐴 → ( 𝑥𝐴𝑥 ∈ { 𝑦 ∣ ⊥ } ) )
18 17 alimi ( ∀ 𝑥 ¬ 𝑥𝐴 → ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ { 𝑦 ∣ ⊥ } ) )
19 dfcleq ( 𝐴 = { 𝑦 ∣ ⊥ } ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ { 𝑦 ∣ ⊥ } ) )
20 18 19 sylibr ( ∀ 𝑥 ¬ 𝑥𝐴𝐴 = { 𝑦 ∣ ⊥ } )
21 dfnul4 ∅ = { 𝑦 ∣ ⊥ }
22 20 21 eqtr4di ( ∀ 𝑥 ¬ 𝑥𝐴𝐴 = ∅ )
23 5 10 22 3syl ( ∀ 𝑥𝐴 ( ¬ 𝜑𝜑 ) → 𝐴 = ∅ )
24 2 23 sylbir ( ( ∀ 𝑥𝐴 ¬ 𝜑 ∧ ∀ 𝑥𝐴 𝜑 ) → 𝐴 = ∅ )
25 24 ex ( ∀ 𝑥𝐴 ¬ 𝜑 → ( ∀ 𝑥𝐴 𝜑𝐴 = ∅ ) )
26 1 a1i ( 𝑥𝐴 → ¬ 𝜑 )
27 25 26 mprg ( ∀ 𝑥𝐴 𝜑𝐴 = ∅ )
28 rzal ( 𝐴 = ∅ → ∀ 𝑥𝐴 𝜑 )
29 27 28 impbii ( ∀ 𝑥𝐴 𝜑𝐴 = ∅ )