Step |
Hyp |
Ref |
Expression |
1 |
|
ralf0.1 |
⊢ ¬ 𝜑 |
2 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ¬ 𝜑 ∧ 𝜑 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
3 |
|
pm2.24 |
⊢ ( 𝜑 → ( ¬ 𝜑 → ⊥ ) ) |
4 |
3
|
impcom |
⊢ ( ( ¬ 𝜑 ∧ 𝜑 ) → ⊥ ) |
5 |
4
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ¬ 𝜑 ∧ 𝜑 ) → ∀ 𝑥 ∈ 𝐴 ⊥ ) |
6 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ⊥ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ⊥ ) ) |
7 |
|
dfnot |
⊢ ( ¬ 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 → ⊥ ) ) |
8 |
7
|
bicomi |
⊢ ( ( 𝑥 ∈ 𝐴 → ⊥ ) ↔ ¬ 𝑥 ∈ 𝐴 ) |
9 |
8
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ⊥ ) ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |
10 |
6 9
|
sylbb |
⊢ ( ∀ 𝑥 ∈ 𝐴 ⊥ → ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |
11 |
|
id |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) |
12 |
|
falim |
⊢ ( ⊥ → 𝑥 ∈ 𝐴 ) |
13 |
11 12
|
pm5.21ni |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 ↔ ⊥ ) ) |
14 |
|
df-clab |
⊢ ( 𝑥 ∈ { 𝑦 ∣ ⊥ } ↔ [ 𝑥 / 𝑦 ] ⊥ ) |
15 |
|
sbv |
⊢ ( [ 𝑥 / 𝑦 ] ⊥ ↔ ⊥ ) |
16 |
14 15
|
bitri |
⊢ ( 𝑥 ∈ { 𝑦 ∣ ⊥ } ↔ ⊥ ) |
17 |
13 16
|
bitr4di |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑦 ∣ ⊥ } ) ) |
18 |
17
|
alimi |
⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑦 ∣ ⊥ } ) ) |
19 |
|
dfcleq |
⊢ ( 𝐴 = { 𝑦 ∣ ⊥ } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑦 ∣ ⊥ } ) ) |
20 |
18 19
|
sylibr |
⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 → 𝐴 = { 𝑦 ∣ ⊥ } ) |
21 |
|
dfnul4 |
⊢ ∅ = { 𝑦 ∣ ⊥ } |
22 |
20 21
|
eqtr4di |
⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 → 𝐴 = ∅ ) |
23 |
5 10 22
|
3syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ¬ 𝜑 ∧ 𝜑 ) → 𝐴 = ∅ ) |
24 |
2 23
|
sylbir |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜑 ) → 𝐴 = ∅ ) |
25 |
24
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜑 → 𝐴 = ∅ ) ) |
26 |
1
|
a1i |
⊢ ( 𝑥 ∈ 𝐴 → ¬ 𝜑 ) |
27 |
25 26
|
mprg |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → 𝐴 = ∅ ) |
28 |
|
rzal |
⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∈ 𝐴 𝜑 ) |
29 |
27 28
|
impbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅ ) |