Metamath Proof Explorer


Theorem ralf0OLD

Description: Obsolete version of ralf0 as of 2-Sep-2024. (Contributed by NM, 26-Nov-2005) (Proof shortened by JJ, 14-Jul-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ralf0OLD.1 ¬ 𝜑
Assertion ralf0OLD ( ∀ 𝑥𝐴 𝜑𝐴 = ∅ )

Proof

Step Hyp Ref Expression
1 ralf0OLD.1 ¬ 𝜑
2 mtt ( ¬ 𝜑 → ( ¬ 𝑥𝐴 ↔ ( 𝑥𝐴𝜑 ) ) )
3 1 2 ax-mp ( ¬ 𝑥𝐴 ↔ ( 𝑥𝐴𝜑 ) )
4 3 albii ( ∀ 𝑥 ¬ 𝑥𝐴 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
5 eq0 ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥𝐴 )
6 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
7 4 5 6 3bitr4ri ( ∀ 𝑥𝐴 𝜑𝐴 = ∅ )