Description: Obsolete version of ralf0 as of 2-Sep-2024. (Contributed by NM, 26-Nov-2005) (Proof shortened by JJ, 14-Jul-2021) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralf0OLD.1 | ⊢ ¬ 𝜑 | |
Assertion | ralf0OLD | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralf0OLD.1 | ⊢ ¬ 𝜑 | |
2 | mtt | ⊢ ( ¬ 𝜑 → ( ¬ 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ¬ 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
4 | 3 | albii | ⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
5 | eq0 | ⊢ ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) | |
6 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
7 | 4 5 6 | 3bitr4ri | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅ ) |