Description: Two ways of expressing empty set. (Contributed by Glauco Siliprandi, 24-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralfal.1 | ⊢ Ⅎ 𝑥 𝐴 | |
Assertion | ralfal | ⊢ ( 𝐴 = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralfal.1 | ⊢ Ⅎ 𝑥 𝐴 | |
2 | df-fal | ⊢ ( ⊥ ↔ ¬ ⊤ ) | |
3 | 2 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ⊥ ↔ ∀ 𝑥 ∈ 𝐴 ¬ ⊤ ) |
4 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ⊤ ↔ ¬ ∃ 𝑥 ∈ 𝐴 ⊤ ) | |
5 | 3 4 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ⊥ ↔ ¬ ∃ 𝑥 ∈ 𝐴 ⊤ ) |
6 | rextru | ⊢ ( ∃ 𝑥 𝑥 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ⊤ ) | |
7 | 6 | notbii | ⊢ ( ¬ ∃ 𝑥 𝑥 ∈ 𝐴 ↔ ¬ ∃ 𝑥 ∈ 𝐴 ⊤ ) |
8 | 1 | neq0f | ⊢ ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
9 | 8 | con1bii | ⊢ ( ¬ ∃ 𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅ ) |
10 | 5 7 9 | 3bitr2ri | ⊢ ( 𝐴 = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ⊥ ) |