Metamath Proof Explorer


Theorem ralidm

Description: Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997) Reduce axiom usage. (Revised by Gino Giotto, 2-Sep-2024)

Ref Expression
Assertion ralidm ( ∀ 𝑥𝐴𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 df-ral ( ∀ 𝑥𝐴𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑥𝐴 𝜑 ) )
2 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
3 ax-1 ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) → ( 𝑥𝐴 → ∀ 𝑥 ( 𝑥𝐴𝜑 ) ) )
4 3 axc4i ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) → ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑥 ( 𝑥𝐴𝜑 ) ) )
5 pm2.21 ( ¬ 𝑥𝐴 → ( 𝑥𝐴𝜑 ) )
6 sp ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) → ( 𝑥𝐴𝜑 ) )
7 5 6 ja ( ( 𝑥𝐴 → ∀ 𝑥 ( 𝑥𝐴𝜑 ) ) → ( 𝑥𝐴𝜑 ) )
8 7 alimi ( ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑥 ( 𝑥𝐴𝜑 ) ) → ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
9 4 8 impbii ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑥 ( 𝑥𝐴𝜑 ) ) )
10 2 bicomi ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑥𝐴 𝜑 )
11 10 imbi2i ( ( 𝑥𝐴 → ∀ 𝑥 ( 𝑥𝐴𝜑 ) ) ↔ ( 𝑥𝐴 → ∀ 𝑥𝐴 𝜑 ) )
12 11 albii ( ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑥 ( 𝑥𝐴𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑥𝐴 𝜑 ) )
13 2 9 12 3bitrri ( ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑥𝐴 𝜑 ) ↔ ∀ 𝑥𝐴 𝜑 )
14 1 13 bitri ( ∀ 𝑥𝐴𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐴 𝜑 )