Step |
Hyp |
Ref |
Expression |
1 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
2 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
3 |
|
ax-1 |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
4 |
3
|
axc4i |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
5 |
|
pm2.21 |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
6 |
|
sp |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
7 |
5 6
|
ja |
⊢ ( ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
8 |
7
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
9 |
4 8
|
impbii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
10 |
2
|
bicomi |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) |
11 |
10
|
imbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
12 |
11
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
13 |
2 9 12
|
3bitrri |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) |
14 |
1 13
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) |