Step |
Hyp |
Ref |
Expression |
1 |
|
rzal |
⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ) |
2 |
|
rzal |
⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∈ 𝐴 𝜑 ) |
3 |
1 2
|
2thd |
⊢ ( 𝐴 = ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
4 |
|
neq0 |
⊢ ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
5 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
6 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝜑 |
7 |
6
|
19.23 |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
8 |
5 7
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
9 |
|
biimt |
⊢ ( ∃ 𝑥 𝑥 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
10 |
8 9
|
bitr4id |
⊢ ( ∃ 𝑥 𝑥 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
11 |
4 10
|
sylbi |
⊢ ( ¬ 𝐴 = ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
12 |
3 11
|
pm2.61i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) |