Metamath Proof Explorer


Theorem ralidmOLD

Description: Obsolete version of ralidm as of 2-Sep-2024. (Contributed by NM, 28-Mar-1997) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ralidmOLD ( ∀ 𝑥𝐴𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 rzal ( 𝐴 = ∅ → ∀ 𝑥𝐴𝑥𝐴 𝜑 )
2 rzal ( 𝐴 = ∅ → ∀ 𝑥𝐴 𝜑 )
3 1 2 2thd ( 𝐴 = ∅ → ( ∀ 𝑥𝐴𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐴 𝜑 ) )
4 neq0 ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥𝐴 )
5 df-ral ( ∀ 𝑥𝐴𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑥𝐴 𝜑 ) )
6 nfra1 𝑥𝑥𝐴 𝜑
7 6 19.23 ( ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑥𝐴 𝜑 ) ↔ ( ∃ 𝑥 𝑥𝐴 → ∀ 𝑥𝐴 𝜑 ) )
8 5 7 bitri ( ∀ 𝑥𝐴𝑥𝐴 𝜑 ↔ ( ∃ 𝑥 𝑥𝐴 → ∀ 𝑥𝐴 𝜑 ) )
9 biimt ( ∃ 𝑥 𝑥𝐴 → ( ∀ 𝑥𝐴 𝜑 ↔ ( ∃ 𝑥 𝑥𝐴 → ∀ 𝑥𝐴 𝜑 ) ) )
10 8 9 bitr4id ( ∃ 𝑥 𝑥𝐴 → ( ∀ 𝑥𝐴𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐴 𝜑 ) )
11 4 10 sylbi ( ¬ 𝐴 = ∅ → ( ∀ 𝑥𝐴𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐴 𝜑 ) )
12 3 11 pm2.61i ( ∀ 𝑥𝐴𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐴 𝜑 )