Metamath Proof Explorer


Theorem ralidmw

Description: Idempotent law for restricted quantifier. Weak version of ralidm , which does not require ax-10 , ax-12 , but requires ax-8 . (Contributed by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis ralidmw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion ralidmw ( ∀ 𝑥𝐴𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 ralidmw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
3 2 imbi2i ( ( 𝑥𝐴 → ∀ 𝑥𝐴 𝜑 ) ↔ ( 𝑥𝐴 → ∀ 𝑥 ( 𝑥𝐴𝜑 ) ) )
4 3 albii ( ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑥𝐴 𝜑 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑥 ( 𝑥𝐴𝜑 ) ) )
5 pm2.21 ( ¬ 𝑥𝐴 → ( 𝑥𝐴𝜑 ) )
6 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
7 6 1 imbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑦𝐴𝜓 ) ) )
8 7 spw ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) → ( 𝑥𝐴𝜑 ) )
9 5 8 ja ( ( 𝑥𝐴 → ∀ 𝑥 ( 𝑥𝐴𝜑 ) ) → ( 𝑥𝐴𝜑 ) )
10 9 alimi ( ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑥 ( 𝑥𝐴𝜑 ) ) → ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
11 7 hba1w ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) → ∀ 𝑥𝑥 ( 𝑥𝐴𝜑 ) )
12 ax-1 ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) → ( 𝑥𝐴 → ∀ 𝑥 ( 𝑥𝐴𝜑 ) ) )
13 11 12 alrimih ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) → ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑥 ( 𝑥𝐴𝜑 ) ) )
14 10 13 impbii ( ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑥 ( 𝑥𝐴𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
15 4 14 bitri ( ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑥𝐴 𝜑 ) ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
16 df-ral ( ∀ 𝑥𝐴𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑥𝐴 𝜑 ) )
17 15 16 2 3bitr4i ( ∀ 𝑥𝐴𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐴 𝜑 )