| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ralidmw.1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) ) | 
						
							| 3 | 2 | imbi2i | ⊢ ( ( 𝑥  ∈  𝐴  →  ∀ 𝑥  ∈  𝐴 𝜑 )  ↔  ( 𝑥  ∈  𝐴  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) ) ) | 
						
							| 4 | 3 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑥  ∈  𝐴 𝜑 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) ) ) | 
						
							| 5 |  | pm2.21 | ⊢ ( ¬  𝑥  ∈  𝐴  →  ( 𝑥  ∈  𝐴  →  𝜑 ) ) | 
						
							| 6 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 7 | 6 1 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝐴  →  𝜑 )  ↔  ( 𝑦  ∈  𝐴  →  𝜓 ) ) ) | 
						
							| 8 | 7 | spw | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 )  →  ( 𝑥  ∈  𝐴  →  𝜑 ) ) | 
						
							| 9 | 5 8 | ja | ⊢ ( ( 𝑥  ∈  𝐴  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) )  →  ( 𝑥  ∈  𝐴  →  𝜑 ) ) | 
						
							| 10 | 9 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) )  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) ) | 
						
							| 11 | 7 | hba1w | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 )  →  ∀ 𝑥 ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) ) | 
						
							| 12 |  | ax-1 | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 )  →  ( 𝑥  ∈  𝐴  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) ) ) | 
						
							| 13 | 11 12 | alrimih | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 )  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) ) ) | 
						
							| 14 | 10 13 | impbii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) ) | 
						
							| 15 | 4 14 | bitri | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑥  ∈  𝐴 𝜑 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) ) | 
						
							| 16 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑥  ∈  𝐴 𝜑 ) ) | 
						
							| 17 | 15 16 2 | 3bitr4i | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥  ∈  𝐴 𝜑 ) |