Metamath Proof Explorer
		
		
		
		Description:  Deduction quadrupally quantifying both antecedent and consequent.
       (Contributed by Scott Fenton, 2-Mar-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | ralimd4v.1 | ⊢ ( 𝜑  →  ( 𝜓  →  𝜒 ) ) | 
				
					|  | Assertion | ralimd4v | ⊢  ( 𝜑  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐶 ∀ 𝑤  ∈  𝐷 𝜓  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐶 ∀ 𝑤  ∈  𝐷 𝜒 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ralimd4v.1 | ⊢ ( 𝜑  →  ( 𝜓  →  𝜒 ) ) | 
						
							| 2 | 1 | ralimdvv | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  𝐶 ∀ 𝑤  ∈  𝐷 𝜓  →  ∀ 𝑧  ∈  𝐶 ∀ 𝑤  ∈  𝐷 𝜒 ) ) | 
						
							| 3 | 2 | ralimdvv | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐶 ∀ 𝑤  ∈  𝐷 𝜓  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐶 ∀ 𝑤  ∈  𝐷 𝜒 ) ) |