Metamath Proof Explorer


Theorem ralimd4v

Description: Deduction quadrupally quantifying both antecedent and consequent. (Contributed by Scott Fenton, 2-Mar-2025)

Ref Expression
Hypothesis ralimd4v.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion ralimd4v ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜓 → ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralimd4v.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 ralimdvv ( 𝜑 → ( ∀ 𝑧𝐶𝑤𝐷 𝜓 → ∀ 𝑧𝐶𝑤𝐷 𝜒 ) )
3 2 ralimdvv ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜓 → ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜒 ) )