Metamath Proof Explorer
Description: Deduction quadrupally quantifying both antecedent and consequent.
(Contributed by Scott Fenton, 2-Mar-2025)
|
|
Ref |
Expression |
|
Hypothesis |
ralimd4v.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
|
Assertion |
ralimd4v |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 𝜓 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ralimd4v.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
2 |
1
|
ralimdvv |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 𝜓 → ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 𝜒 ) ) |
3 |
2
|
ralimdvv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 𝜓 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 𝜒 ) ) |