Metamath Proof Explorer


Theorem ralimd6v

Description: Deduction sextupally quantifying both antecedent and consequent. (Contributed by Scott Fenton, 5-Mar-2025)

Ref Expression
Hypothesis ralim6dv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion ralimd6v ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑝𝐸𝑞𝐹 𝜓 → ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑝𝐸𝑞𝐹 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralim6dv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 ralimdvv ( 𝜑 → ( ∀ 𝑝𝐸𝑞𝐹 𝜓 → ∀ 𝑝𝐸𝑞𝐹 𝜒 ) )
3 2 ralimd4v ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑝𝐸𝑞𝐹 𝜓 → ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑝𝐸𝑞𝐹 𝜒 ) )