Description: Deduction sextupally quantifying both antecedent and consequent. (Contributed by Scott Fenton, 5-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralim6dv.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
Assertion | ralimd6v | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜓 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralim6dv.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
2 | 1 | ralimdvv | ⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜓 → ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜒 ) ) |
3 | 2 | ralimd4v | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜓 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 𝜒 ) ) |