Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of Margaris p. 90. (Contributed by NM, 22-Sep-2003) (Proof shortened by Wolf Lammen, 29-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralimdaa.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| ralimdaa.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝜒 ) ) | ||
| Assertion | ralimdaa | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 → ∀ 𝑥 ∈ 𝐴 𝜒 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralimdaa.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | ralimdaa.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝜒 ) ) | |
| 3 | 2 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜒 ) ) ) | 
| 4 | 1 3 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ) | 
| 5 | ralim | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) → ( ∀ 𝑥 ∈ 𝐴 𝜓 → ∀ 𝑥 ∈ 𝐴 𝜒 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 → ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |