Metamath Proof Explorer


Theorem ralimdv2

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005)

Ref Expression
Hypothesis ralimdv2.1 ( 𝜑 → ( ( 𝑥𝐴𝜓 ) → ( 𝑥𝐵𝜒 ) ) )
Assertion ralimdv2 ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 → ∀ 𝑥𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralimdv2.1 ( 𝜑 → ( ( 𝑥𝐴𝜓 ) → ( 𝑥𝐵𝜒 ) ) )
2 1 alimdv ( 𝜑 → ( ∀ 𝑥 ( 𝑥𝐴𝜓 ) → ∀ 𝑥 ( 𝑥𝐵𝜒 ) ) )
3 df-ral ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥 ( 𝑥𝐴𝜓 ) )
4 df-ral ( ∀ 𝑥𝐵 𝜒 ↔ ∀ 𝑥 ( 𝑥𝐵𝜒 ) )
5 2 3 4 3imtr4g ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 → ∀ 𝑥𝐵 𝜒 ) )