Metamath Proof Explorer


Theorem ralimdvv

Description: Deduction doubly quantifying both antecedent and consequent. (Contributed by Scott Fenton, 2-Mar-2025)

Ref Expression
Hypothesis ralimdvv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion ralimdvv ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵 𝜓 → ∀ 𝑥𝐴𝑦𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralimdvv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 adantr ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝜓𝜒 ) )
3 2 ralimdvva ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵 𝜓 → ∀ 𝑥𝐴𝑦𝐵 𝜒 ) )