Metamath Proof Explorer


Theorem ralimdvva

Description: Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.20 of Margaris p. 90 ( alim ). (Contributed by AV, 27-Nov-2019)

Ref Expression
Hypothesis ralimdvva.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝜓𝜒 ) )
Assertion ralimdvva ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵 𝜓 → ∀ 𝑥𝐴𝑦𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralimdvva.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝜓𝜒 ) )
2 1 anassrs ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) → ( 𝜓𝜒 ) )
3 2 ralimdva ( ( 𝜑𝑥𝐴 ) → ( ∀ 𝑦𝐵 𝜓 → ∀ 𝑦𝐵 𝜒 ) )
4 3 ralimdva ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵 𝜓 → ∀ 𝑥𝐴𝑦𝐵 𝜒 ) )