Description: Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.20 of Margaris p. 90 ( alim ). (Contributed by AV, 27-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralimdvva.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝜓 → 𝜒 ) ) | |
Assertion | ralimdvva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdvva.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝜓 → 𝜒 ) ) | |
2 | 1 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝜓 → 𝜒 ) ) |
3 | 2 | ralimdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 𝜓 → ∀ 𝑦 ∈ 𝐵 𝜒 ) ) |
4 | 3 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜒 ) ) |