Metamath Proof Explorer


Theorem ralimi2

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004)

Ref Expression
Hypothesis ralimi2.1 ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐵𝜓 ) )
Assertion ralimi2 ( ∀ 𝑥𝐴 𝜑 → ∀ 𝑥𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 ralimi2.1 ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐵𝜓 ) )
2 1 alimi ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) → ∀ 𝑥 ( 𝑥𝐵𝜓 ) )
3 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
4 df-ral ( ∀ 𝑥𝐵 𝜓 ↔ ∀ 𝑥 ( 𝑥𝐵𝜓 ) )
5 2 3 4 3imtr4i ( ∀ 𝑥𝐴 𝜑 → ∀ 𝑥𝐵 𝜓 )