Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralimi2.1 | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( 𝑥 ∈ 𝐵 → 𝜓 ) ) | |
Assertion | ralimi2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∀ 𝑥 ∈ 𝐵 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimi2.1 | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( 𝑥 ∈ 𝐵 → 𝜓 ) ) | |
2 | 1 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜓 ) ) |
3 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
4 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜓 ) ) | |
5 | 2 3 4 | 3imtr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∀ 𝑥 ∈ 𝐵 𝜓 ) |