Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralimi2.1 | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( 𝑥 ∈ 𝐵 → 𝜓 ) ) | |
| Assertion | ralimi2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∀ 𝑥 ∈ 𝐵 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimi2.1 | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( 𝑥 ∈ 𝐵 → 𝜓 ) ) | |
| 2 | 1 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜓 ) ) |
| 3 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 4 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜓 ) ) | |
| 5 | 2 3 4 | 3imtr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∀ 𝑥 ∈ 𝐵 𝜓 ) |