Metamath Proof Explorer


Theorem ralimia

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996)

Ref Expression
Hypothesis ralimia.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
Assertion ralimia ( ∀ 𝑥𝐴 𝜑 → ∀ 𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 ralimia.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
2 1 a2i ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐴𝜓 ) )
3 2 ralimi2 ( ∀ 𝑥𝐴 𝜑 → ∀ 𝑥𝐴 𝜓 )