Metamath Proof Explorer
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996)
|
|
Ref |
Expression |
|
Hypothesis |
ralimia.1 |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) |
|
Assertion |
ralimia |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ralimia.1 |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) |
2 |
1
|
a2i |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( 𝑥 ∈ 𝐴 → 𝜓 ) ) |
3 |
2
|
ralimi2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) |