Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralimiaa.1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝜓 ) | |
Assertion | ralimiaa | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimiaa.1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝜓 ) | |
2 | 1 | ex | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) |
3 | 2 | ralimia | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) |