Metamath Proof Explorer


Theorem ralimiaa

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007)

Ref Expression
Hypothesis ralimiaa.1 ( ( 𝑥𝐴𝜑 ) → 𝜓 )
Assertion ralimiaa ( ∀ 𝑥𝐴 𝜑 → ∀ 𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 ralimiaa.1 ( ( 𝑥𝐴𝜑 ) → 𝜓 )
2 1 ex ( 𝑥𝐴 → ( 𝜑𝜓 ) )
3 2 ralimia ( ∀ 𝑥𝐴 𝜑 → ∀ 𝑥𝐴 𝜓 )