Metamath Proof Explorer


Theorem ralimralim

Description: Introducing any antecedent in a restricted universal quantification. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion ralimralim ( ∀ 𝑥𝐴 𝜑 → ∀ 𝑥𝐴 ( 𝜓𝜑 ) )

Proof

Step Hyp Ref Expression
1 nfra1 𝑥𝑥𝐴 𝜑
2 rspa ( ( ∀ 𝑥𝐴 𝜑𝑥𝐴 ) → 𝜑 )
3 ax-1 ( 𝜑 → ( 𝜓𝜑 ) )
4 2 3 syl ( ( ∀ 𝑥𝐴 𝜑𝑥𝐴 ) → ( 𝜓𝜑 ) )
5 4 ex ( ∀ 𝑥𝐴 𝜑 → ( 𝑥𝐴 → ( 𝜓𝜑 ) ) )
6 1 5 ralrimi ( ∀ 𝑥𝐴 𝜑 → ∀ 𝑥𝐴 ( 𝜓𝜑 ) )