Metamath Proof Explorer


Theorem ralin

Description: Restricted universal quantification over intersection. (Contributed by Peter Mazsa, 8-Sep-2023)

Ref Expression
Assertion ralin ( ∀ 𝑥 ∈ ( 𝐴𝐵 ) 𝜑 ↔ ∀ 𝑥𝐴 ( 𝑥𝐵𝜑 ) )

Proof

Step Hyp Ref Expression
1 elin ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
2 1 imbi1i ( ( 𝑥 ∈ ( 𝐴𝐵 ) → 𝜑 ) ↔ ( ( 𝑥𝐴𝑥𝐵 ) → 𝜑 ) )
3 impexp ( ( ( 𝑥𝐴𝑥𝐵 ) → 𝜑 ) ↔ ( 𝑥𝐴 → ( 𝑥𝐵𝜑 ) ) )
4 2 3 bitri ( ( 𝑥 ∈ ( 𝐴𝐵 ) → 𝜑 ) ↔ ( 𝑥𝐴 → ( 𝑥𝐵𝜑 ) ) )
5 4 ralbii2 ( ∀ 𝑥 ∈ ( 𝐴𝐵 ) 𝜑 ↔ ∀ 𝑥𝐴 ( 𝑥𝐵𝜑 ) )