Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | ralinexa | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnan | ⊢ ( ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ( 𝜑 ∧ 𝜓 ) ) | |
2 | 1 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → ¬ 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ¬ ( 𝜑 ∧ 𝜓 ) ) |
3 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ( 𝜑 ∧ 𝜓 ) ↔ ¬ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) | |
4 | 2 3 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) |