Metamath Proof Explorer


Theorem ralinexa

Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005)

Ref Expression
Assertion ralinexa ( ∀ 𝑥𝐴 ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ∃ 𝑥𝐴 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 imnan ( ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
2 1 ralbii ( ∀ 𝑥𝐴 ( 𝜑 → ¬ 𝜓 ) ↔ ∀ 𝑥𝐴 ¬ ( 𝜑𝜓 ) )
3 ralnex ( ∀ 𝑥𝐴 ¬ ( 𝜑𝜓 ) ↔ ¬ ∃ 𝑥𝐴 ( 𝜑𝜓 ) )
4 2 3 bitri ( ∀ 𝑥𝐴 ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ∃ 𝑥𝐴 ( 𝜑𝜓 ) )