Metamath Proof Explorer


Theorem raln

Description: Restricted universally quantified negation expressed as a universally quantified negation. (Contributed by BJ, 16-Jul-2021)

Ref Expression
Assertion raln ( ∀ 𝑥𝐴 ¬ 𝜑 ↔ ∀ 𝑥 ¬ ( 𝑥𝐴𝜑 ) )

Proof

Step Hyp Ref Expression
1 df-ral ( ∀ 𝑥𝐴 ¬ 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴 → ¬ 𝜑 ) )
2 imnang ( ∀ 𝑥 ( 𝑥𝐴 → ¬ 𝜑 ) ↔ ∀ 𝑥 ¬ ( 𝑥𝐴𝜑 ) )
3 1 2 bitri ( ∀ 𝑥𝐴 ¬ 𝜑 ↔ ∀ 𝑥 ¬ ( 𝑥𝐴𝜑 ) )