Description: Restricted universally quantified negation expressed as a universally quantified negation. (Contributed by BJ, 16-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | raln | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝜑 ) ) | |
2 | imnang | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝜑 ) ↔ ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
3 | 1 2 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |