Metamath Proof Explorer


Theorem ralnralall

Description: A contradiction concerning restricted generalization for a nonempty set implies anything. (Contributed by Alexander van der Vekens, 4-Sep-2018)

Ref Expression
Assertion ralnralall ( 𝐴 ≠ ∅ → ( ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐴 ¬ 𝜑 ) → 𝜓 ) )

Proof

Step Hyp Ref Expression
1 r19.26 ( ∀ 𝑥𝐴 ( 𝜑 ∧ ¬ 𝜑 ) ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐴 ¬ 𝜑 ) )
2 pm3.24 ¬ ( 𝜑 ∧ ¬ 𝜑 )
3 2 bifal ( ( 𝜑 ∧ ¬ 𝜑 ) ↔ ⊥ )
4 3 ralbii ( ∀ 𝑥𝐴 ( 𝜑 ∧ ¬ 𝜑 ) ↔ ∀ 𝑥𝐴 ⊥ )
5 r19.3rzv ( 𝐴 ≠ ∅ → ( ⊥ ↔ ∀ 𝑥𝐴 ⊥ ) )
6 falim ( ⊥ → 𝜓 )
7 5 6 syl6bir ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 ⊥ → 𝜓 ) )
8 4 7 syl5bi ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 ( 𝜑 ∧ ¬ 𝜑 ) → 𝜓 ) )
9 1 8 syl5bir ( 𝐴 ≠ ∅ → ( ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐴 ¬ 𝜑 ) → 𝜓 ) )