Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
ralpr
Metamath Proof Explorer
Description: Convert a restricted universal quantification over a pair to a
conjunction. (Contributed by NM , 3-Jun-2007) (Revised by Mario
Carneiro , 23-Apr-2015)
Ref
Expression
Hypotheses
ralpr.1
⊢ 𝐴 ∈ V
ralpr.2
⊢ 𝐵 ∈ V
ralpr.3
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
ralpr.4
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) )
Assertion
ralpr
⊢ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) )
Proof
Step
Hyp
Ref
Expression
1
ralpr.1
⊢ 𝐴 ∈ V
2
ralpr.2
⊢ 𝐵 ∈ V
3
ralpr.3
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
4
ralpr.4
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) )
5
3 4
ralprg
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) )
6
1 2 5
mp2an
⊢ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) )