Metamath Proof Explorer


Theorem ralpr

Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007) (Revised by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses ralpr.1 𝐴 ∈ V
ralpr.2 𝐵 ∈ V
ralpr.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
ralpr.4 ( 𝑥 = 𝐵 → ( 𝜑𝜒 ) )
Assertion ralpr ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralpr.1 𝐴 ∈ V
2 ralpr.2 𝐵 ∈ V
3 ralpr.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
4 ralpr.4 ( 𝑥 = 𝐵 → ( 𝜑𝜒 ) )
5 3 4 ralprg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓𝜒 ) ) )
6 1 2 5 mp2an ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓𝜒 ) )