Step |
Hyp |
Ref |
Expression |
1 |
|
ralprg.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
ralprg.2 |
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
df-pr |
⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) |
4 |
3
|
raleqi |
⊢ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ∀ 𝑥 ∈ ( { 𝐴 } ∪ { 𝐵 } ) 𝜑 ) |
5 |
|
ralunb |
⊢ ( ∀ 𝑥 ∈ ( { 𝐴 } ∪ { 𝐵 } ) 𝜑 ↔ ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐵 } 𝜑 ) ) |
6 |
4 5
|
bitri |
⊢ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐵 } 𝜑 ) ) |
7 |
1
|
ralsng |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) ) |
8 |
2
|
ralsng |
⊢ ( 𝐵 ∈ 𝑊 → ( ∀ 𝑥 ∈ { 𝐵 } 𝜑 ↔ 𝜒 ) ) |
9 |
7 8
|
bi2anan9 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐵 } 𝜑 ) ↔ ( 𝜓 ∧ 𝜒 ) ) ) |
10 |
6 9
|
syl5bb |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ) |