| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ralab2.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) |
| 2 |
|
df-rab |
⊢ { 𝑦 ∈ 𝐴 ∣ 𝜑 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } |
| 3 |
2
|
raleqi |
⊢ ( ∀ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } 𝜓 ↔ ∀ 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } 𝜓 ) |
| 4 |
1
|
ralab2 |
⊢ ( ∀ 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } 𝜓 ↔ ∀ 𝑦 ( ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) → 𝜒 ) ) |
| 5 |
|
impexp |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) → 𝜒 ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝜑 → 𝜒 ) ) ) |
| 6 |
5
|
albii |
⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) → 𝜒 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝜑 → 𝜒 ) ) ) |
| 7 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝜑 → 𝜒 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝜑 → 𝜒 ) ) ) |
| 8 |
6 7
|
bitr4i |
⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) → 𝜒 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝜑 → 𝜒 ) ) |
| 9 |
3 4 8
|
3bitri |
⊢ ( ∀ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } 𝜓 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝜑 → 𝜒 ) ) |