Metamath Proof Explorer


Theorem ralrexbid

Description: Formula-building rule for restricted existential quantifier, using a restricted universal quantifier to bind the quantified variable in the antecedent. (Contributed by AV, 21-Oct-2023) Reduce axiom usage. (Revised by SN, 13-Nov-2023) (Proof shortened by Wolf Lammen, 4-Nov-2024)

Ref Expression
Hypothesis ralrexbid.1 ( 𝜑 → ( 𝜓𝜃 ) )
Assertion ralrexbid ( ∀ 𝑥𝐴 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜃 ) )

Proof

Step Hyp Ref Expression
1 ralrexbid.1 ( 𝜑 → ( 𝜓𝜃 ) )
2 1 ralimi ( ∀ 𝑥𝐴 𝜑 → ∀ 𝑥𝐴 ( 𝜓𝜃 ) )
3 rexbi ( ∀ 𝑥𝐴 ( 𝜓𝜃 ) → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜃 ) )
4 2 3 syl ( ∀ 𝑥𝐴 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜃 ) )