Metamath Proof Explorer


Theorem ralrexbid

Description: Formula-building rule for restricted existential quantifier, using a restricted universal quantifier to bind the quantified variable in the antecedent. (Contributed by AV, 21-Oct-2023) Reduce axiom usage. (Revised by SN, 13-Nov-2023)

Ref Expression
Hypothesis ralrexbid.1 ( 𝜑 → ( 𝜓𝜃 ) )
Assertion ralrexbid ( ∀ 𝑥𝐴 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜃 ) )

Proof

Step Hyp Ref Expression
1 ralrexbid.1 ( 𝜑 → ( 𝜓𝜃 ) )
2 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
3 1 imim2i ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐴 → ( 𝜓𝜃 ) ) )
4 3 pm5.32d ( ( 𝑥𝐴𝜑 ) → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐴𝜃 ) ) )
5 4 alexbii ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) → ( ∃ 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∃ 𝑥 ( 𝑥𝐴𝜃 ) ) )
6 2 5 sylbi ( ∀ 𝑥𝐴 𝜑 → ( ∃ 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∃ 𝑥 ( 𝑥𝐴𝜃 ) ) )
7 df-rex ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥𝐴𝜓 ) )
8 df-rex ( ∃ 𝑥𝐴 𝜃 ↔ ∃ 𝑥 ( 𝑥𝐴𝜃 ) )
9 6 7 8 3bitr4g ( ∀ 𝑥𝐴 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜃 ) )