| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ralrexbid.1 | ⊢ ( 𝜑  →  ( 𝜓  ↔  𝜃 ) ) | 
						
							| 2 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) ) | 
						
							| 3 | 1 | imim2i | ⊢ ( ( 𝑥  ∈  𝐴  →  𝜑 )  →  ( 𝑥  ∈  𝐴  →  ( 𝜓  ↔  𝜃 ) ) ) | 
						
							| 4 | 3 | pm5.32d | ⊢ ( ( 𝑥  ∈  𝐴  →  𝜑 )  →  ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝜃 ) ) ) | 
						
							| 5 | 4 | alexbii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 )  →  ( ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜓 )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜃 ) ) ) | 
						
							| 6 | 2 5 | sylbi | ⊢ ( ∀ 𝑥  ∈  𝐴 𝜑  →  ( ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜓 )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜃 ) ) ) | 
						
							| 7 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝐴 𝜓  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) | 
						
							| 8 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝐴 𝜃  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜃 ) ) | 
						
							| 9 | 6 7 8 | 3bitr4g | ⊢ ( ∀ 𝑥  ∈  𝐴 𝜑  →  ( ∃ 𝑥  ∈  𝐴 𝜓  ↔  ∃ 𝑥  ∈  𝐴 𝜃 ) ) |