Step |
Hyp |
Ref |
Expression |
1 |
|
ralrexbid.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜃 ) ) |
2 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
3 |
1
|
imim2i |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜃 ) ) ) |
4 |
3
|
pm5.32d |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜃 ) ) ) |
5 |
4
|
alexbii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜃 ) ) ) |
6 |
2 5
|
sylbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜃 ) ) ) |
7 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
8 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜃 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜃 ) ) |
9 |
6 7 8
|
3bitr4g |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 𝜃 ) ) |