Metamath Proof Explorer


Theorem ralrimd

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 16-Feb-2004)

Ref Expression
Hypotheses ralrimd.1 𝑥 𝜑
ralrimd.2 𝑥 𝜓
ralrimd.3 ( 𝜑 → ( 𝜓 → ( 𝑥𝐴𝜒 ) ) )
Assertion ralrimd ( 𝜑 → ( 𝜓 → ∀ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralrimd.1 𝑥 𝜑
2 ralrimd.2 𝑥 𝜓
3 ralrimd.3 ( 𝜑 → ( 𝜓 → ( 𝑥𝐴𝜒 ) ) )
4 1 2 3 alrimd ( 𝜑 → ( 𝜓 → ∀ 𝑥 ( 𝑥𝐴𝜒 ) ) )
5 df-ral ( ∀ 𝑥𝐴 𝜒 ↔ ∀ 𝑥 ( 𝑥𝐴𝜒 ) )
6 4 5 syl6ibr ( 𝜑 → ( 𝜓 → ∀ 𝑥𝐴 𝜒 ) )