Metamath Proof Explorer


Theorem ralrimdva

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008) (Proof shortened by Wolf Lammen, 28-Dec-2019)

Ref Expression
Hypothesis ralrimdva.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion ralrimdva ( 𝜑 → ( 𝜓 → ∀ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralrimdva.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
2 1 expimpd ( 𝜑 → ( ( 𝑥𝐴𝜓 ) → 𝜒 ) )
3 2 expcomd ( 𝜑 → ( 𝜓 → ( 𝑥𝐴𝜒 ) ) )
4 3 ralrimdv ( 𝜑 → ( 𝜓 → ∀ 𝑥𝐴 𝜒 ) )