Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008) (Proof shortened by Wolf Lammen, 28-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralrimdva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝜒 ) ) | |
| Assertion | ralrimdva | ⊢ ( 𝜑 → ( 𝜓 → ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimdva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝜒 ) ) | |
| 2 | 1 | expimpd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝜒 ) ) |
| 3 | 2 | expcomd | ⊢ ( 𝜑 → ( 𝜓 → ( 𝑥 ∈ 𝐴 → 𝜒 ) ) ) |
| 4 | 3 | ralrimdv | ⊢ ( 𝜑 → ( 𝜓 → ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |