Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008) (Proof shortened by Wolf Lammen, 28-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralrimdva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝜒 ) ) | |
Assertion | ralrimdva | ⊢ ( 𝜑 → ( 𝜓 → ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimdva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝜒 ) ) | |
2 | 1 | expimpd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝜒 ) ) |
3 | 2 | expcomd | ⊢ ( 𝜑 → ( 𝜓 → ( 𝑥 ∈ 𝐴 → 𝜒 ) ) ) |
4 | 3 | ralrimdv | ⊢ ( 𝜑 → ( 𝜓 → ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |