Metamath Proof Explorer


Theorem ralrimdvv

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005)

Ref Expression
Hypothesis ralrimdvv.1 ( 𝜑 → ( 𝜓 → ( ( 𝑥𝐴𝑦𝐵 ) → 𝜒 ) ) )
Assertion ralrimdvv ( 𝜑 → ( 𝜓 → ∀ 𝑥𝐴𝑦𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralrimdvv.1 ( 𝜑 → ( 𝜓 → ( ( 𝑥𝐴𝑦𝐵 ) → 𝜒 ) ) )
2 1 imp ( ( 𝜑𝜓 ) → ( ( 𝑥𝐴𝑦𝐵 ) → 𝜒 ) )
3 2 ralrimivv ( ( 𝜑𝜓 ) → ∀ 𝑥𝐴𝑦𝐵 𝜒 )
4 3 ex ( 𝜑 → ( 𝜓 → ∀ 𝑥𝐴𝑦𝐵 𝜒 ) )