Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralrimdvva.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝜓 → 𝜒 ) ) | |
| Assertion | ralrimdvva | ⊢ ( 𝜑 → ( 𝜓 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜒 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralrimdvva.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝜓 → 𝜒 ) ) | |
| 2 | 1 | ex | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝜓 → 𝜒 ) ) ) | 
| 3 | 2 | com23 | ⊢ ( 𝜑 → ( 𝜓 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜒 ) ) ) | 
| 4 | 3 | ralrimdvv | ⊢ ( 𝜑 → ( 𝜓 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜒 ) ) |