Metamath Proof Explorer


Theorem ralrimdvva

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008)

Ref Expression
Hypothesis ralrimdvva.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝜓𝜒 ) )
Assertion ralrimdvva ( 𝜑 → ( 𝜓 → ∀ 𝑥𝐴𝑦𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralrimdvva.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝜓𝜒 ) )
2 1 ex ( 𝜑 → ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝜓𝜒 ) ) )
3 2 com23 ( 𝜑 → ( 𝜓 → ( ( 𝑥𝐴𝑦𝐵 ) → 𝜒 ) ) )
4 3 ralrimdvv ( 𝜑 → ( 𝜓 → ∀ 𝑥𝐴𝑦𝐵 𝜒 ) )