Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralrimdvva.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝜓 → 𝜒 ) ) | |
Assertion | ralrimdvva | ⊢ ( 𝜑 → ( 𝜓 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimdvva.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝜓 → 𝜒 ) ) | |
2 | 1 | ex | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝜓 → 𝜒 ) ) ) |
3 | 2 | com23 | ⊢ ( 𝜑 → ( 𝜓 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜒 ) ) ) |
4 | 3 | ralrimdvv | ⊢ ( 𝜑 → ( 𝜓 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜒 ) ) |